0%

AC自动机

AC自动机

模板

找到有多少个匹配的

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e6 + 100;
const int cc = 26;
#define ms(a,b) memset(a,b,sizeof(a))
struct ACAM{
int ch[maxn][cc], fail[maxn];
int end[maxn], idx[maxn];
int tot;
void init() {
ms(ch, 0), ms(end, 0), ms(fail, 0);
tot = 0;
}
void insert(char *s) {
int u = 0;
for (int i = 0; s[i];i++) {
int v = s[i]-'a';
if(!ch[u][v]) {
ch[u][v] = ++tot;
}
u = ch[u][v];
}
end[u]++;
}

queue<int> q;
void build(){
for (int i = 0; i < cc; i++) {
if (ch[0][i])
q.push(ch[0][i]);
}
while (!q.empty()) {
int u = q.front();
q.pop();
for (int v = 0; v < cc;v++) {
if(ch[u][v]) {
fail[ch[u][v]] = ch[fail[u]][v];
q.push(ch[u][v]);
}
else
ch[u][v] = ch[fail[u]][v];
}
}
}

int query(char *t) {
int u = 0, res = 0;
for (int i = 0; t[i];i++) {
int v = t[i] - 'a';
u = ch[u][v];
for (int j = u; j && end[j] != -1;j = fail[j]) {
res += end[j], end[j] = -1;
}
}
return res;
}
} ac;
char s[maxn];
char t[maxn];
int main() {
int n;
while(~scanf("%d", &n)) {
for (int i = 1; i <= n;i++) {
scanf("%s", s);
ac.insert(s);
}
ac.build();
scanf("%s", t);
cout << ac.query(t) << endl;
}
}

找到匹配次数最多的模板串

https://www.luogu.com.cn/problem/P3796

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#include<bits/stdc++.h>
using namespace std;
const int maxn = 155 * 75;
const int cc = 26;
#define ms(a,b) memset(a,b,sizeof(a))
struct AC{
int ch[maxn][cc], fail[maxn];
int idx[maxn], val[maxn], cnt[maxn];
int tot;
void init() {
ms(ch, 0), ms(fail, 0);
ms(idx, 0), ms(val, 0), ms(cnt, 0);
tot = 0;
}
void insert(char *s,int id) {
int u = 0;
for (int i = 0; s[i]; i++) {
int v = s[i]-'a';
if(!ch[u][v]) {
ch[u][v] = ++tot;
}
u = ch[u][v];
}
idx[id] = u;//如果有重复字符串,并不影响答案
}

queue<int> q;
void build(){
for (int i = 0; i < 26; i++) {
if (ch[0][i])
q.push(ch[0][i]);
}
while (q.size()) {
int u = q.front();
q.pop();
for (int v = 0; v < 26;v++) {
if(ch[u][v]) {
fail[ch[u][v]] = ch[fail[u]][v];
q.push(ch[u][v]);
}
else
ch[u][v] = ch[fail[u]][v];
}
}
}

int query(char *t) { //返回出现的最大次数
int u = 0, res = 0;
for (int i = 0; t[i];i++) {
int v = t[i] - 'a';
u = ch[u][v];
for (int j = u; j;j = fail[j]) {
val[j]++;
}
}
for (int i = 0; i <= tot; i++) {
if (idx[i]) {
res = max(res, val[i]);
cnt[idx[i]] = val[i];
}
}
return res;
}
} ac;
char s[200][100];
char t[1000005];
int main() {
int n;
while(~scanf("%d", &n)&&n!=0) {
ac.init();
for (int i = 1; i <= n;i++) {
scanf("%s", s[i]);
ac.insert(s[i], i);
}
ac.build();
scanf("%s", t);
int mx = ac.query(t);
printf("%d\n", mx);
for(int i=1;i<=n;i++) {
if(ac.cnt[i]==mx) {
printf("%s\n", s[i]);
}
}
}
}

输出每个模式串在文本串中出现的次数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#include<bits/stdc++.h>
using namespace std;
const int maxn = 2e5 + 10;
const int cc = 26;
#define ms(a,b) memset(a,b,sizeof(a))
struct AC{
int ch[maxn][cc], fail[maxn];
int idx[maxn], siz[maxn];
int tot;
void init() {
ms(ch, 0), ms(fail, 0);
ms(idx, 0), ms(siz, 0);
tot = 0;
}
void insert(char *s,int id) {
int u = 0;
for (int i = 0; s[i]; i++) {
int v = s[i]-'a';
if(!ch[u][v]) {
ch[u][v] = ++tot;
}
u = ch[u][v];
}
idx[id] = u;//将第id个模式串对应的节点标记出来(可以重复)
}

queue<int> q;
void build(){
for (int i = 0; i < 26; i++) {
if (ch[0][i])
q.push(ch[0][i]);
}
while (q.size()) {
int u = q.front();
q.pop();
for (int v = 0; v < 26;v++) {
if(ch[u][v]) {
fail[ch[u][v]] = ch[fail[u]][v];
q.push(ch[u][v]);
}
else
ch[u][v] = ch[fail[u]][v];
}
}
}

vector<int> e[maxn];
void dfs(int u) {
for(int v:e[u]) {
dfs(v);
siz[u] += siz[v];
}
}
void query(char *t) { //计算每个模式串出现的次数
int u = 0, res = 0;
for (int i = 0; i <= tot; i++) e[i].clear();
for (int i = 0; t[i];i++) {
int v = t[i] - 'a';
u = ch[u][v];
siz[u]++;
}
for(int i=1;i<=tot;i++) {
e[fail[i]].push_back(i);//建fail树
}
dfs(0);
}
} ac;
char s[maxn];
char t[2000005];
int main() {
int n;
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
scanf("%s", s);
ac.insert(s, i);
}
ac.build();
scanf("%s", t);
ac.query(t);
for (int i = 1; i <= n; i++) {
printf("%d\n", ac.siz[ac.idx[i]]);
}
}

例题

小明系列故事-女友的考验

题意

从1号点走到n号点,路径只能按照升序

给定m条限制,这m条路径是不可以走的

请问从1到n的最短路径是什么

思路

在Tire图中,每一个结点代表一个前缀

把不可以走的路径放到Tire图里面,这样每个结点代表一个状态,如果那个状态被标记,则代表不可以走,这样在最短路的时候就不可以算这个点

dp[i][j]dp[i][j]表示在第i个点,状态是j

具体看代码

代码 : http://xlorpaste.cn/knri9b

注意

1
end[u] |= end[fail[u]];//把危险节点都标记上